The “Theory & Applications of Forging & Die Design” school continues to evolve, reflecting new insights into forging technology and the wide availability of metal flow simulation software. This four-day school is taught by a team of industry experts and engineering professors who work together to carefully explain principles and practice. We urge you to join the 1300+ forging employees who have already attended this course.

Scheduled for one presentation in 2011

June 20 – 23, 2011
Embassy Suites Hotel
Cleveland, OH

Dr. Chester J. Van Tyne, FIERF Professor, Colorado School of Mines, Curriculum Coordinator
Process of Forging
Forging is a method of shaping metals and alloys into parts of useful shapes. It is an art that has developed over thousands of years. It is still developing. Because of its long history, many of the terms used reflect ancient practices, and some of them have lost their original meaning. Therefore, we will establish a common language by reviewing all forging processes for which dies will have to be designed.

Factors Affecting the Forging Process
When a die designer receives a request for a die, they follow an extremely complex process in which a variety of factors are weighed, their interactions considered and, if necessary, several interactions performed to arrive at a solution. We will review some of these interactions and show how to quantify many aspects of die design.

Mechanical Behavior of Metals
The deformation of the workpiece may be expressed numerically by its dimensions before and after forging. The shape change and its effects are thus easily described by strain to which the material is subjected.

Stress Encountered in Forging
Flow stress is a fundamental metal characteristic of great importance. It is the stress, which must be applied to make a metal deform plastically.

Predicting Forging Loads: Simple Upsetting
Often approximate values for forging loads can be determined by assuming simple shapes for the workpieces. The upsetting of cylinders and forging of slabs with flat dies will be presented.

Predicting Forging Loads: Impression Die Forging
In forging, metal flow, die fill and forging load are largely determined by; (a) the resistance of the forging material to flow, (b) the friction and cooling effects at the die-material interface, and (c) the complexity of the forging shape. These issues will be discussed.

Mechanical Fundamentals
Stress and strain are critical concepts in understanding how the metal behaviors under the influence of the die. At low temperatures metals become stronger as more deformation is imposed. At high temperatures the rate of deformation strongly influences the metal’s resistance to flow. Die deflection is also dependent on the stresses generated during the forging.

Physics Fundamentals
The concepts of force, energy, work and power are important in producing a successful forging and using forging equipment effectively. All these entities are related to each other, yet each needs to be understood separately and how it can be harnessed within a forging operation.

Forging Materials
Forging can produce practically all important metals and alloys. There can be, however, great differences in their flow strength and their workability. Even for the same material, these properties may also greatly change with temperature, strain rate, and the cleanliness of the material.

Contact Fundamentals
The interface between the die and the workpiece is important for frictional resistance. Friction is a very powerful controlling factor in forging. Lubrication is often required to control the friction, reduce die wear, prevent welding and aid in part removal.

Thermal Fundamentals
Heat can be transferred by conduction, convection or radiation. All three modes of heat flow are present in a forging operation. It is important to understand the dominant mode so that energy can be effectively used in heating the workpiece up to the proper forging temperature.

Forging Operations
Closed die forging, open die forging, extrusion, drawing, rolling, shearing and trimming are operations used in producing high quality forgings. These operations have some similarities but also significant differences. It is important to understand some of the design details associated with each operation.

Forging Equipment
Forging hammers, mechanical presses, hydraulic presses and screw presses are all used in forge shops. The behavior and limitations of each piece of equipment is critical in using the proper equipment for the appropriate job.

Simulation Software
The current standard for metalforming simulations include robust and thoroughly validated process models, which are fast, cost effective and relatively easy to use. Designers and engineers can run simulations in even small companies on their personal computers.

Forging Defects
Geometrical and material induced defects can occur during forging. Geometrical defects can be corrected by changes in die design. Material defects can be minimized by forging under the right conditions.

Forging Die Failures
Forging dies can fail in service. Such failures are undesirable. When a failure does occur, it is important that the root cause for the failure be found and the conditions for the failure be avoided or minimized in the future.
Preforming for Impression Die Forging

One of the most important aspects of impression die forging is the proper design of preforming operations and of the blocker dies, to achieve adequate metal distribution. Thus, in the finish-forging operation, defect-free metal flow and complete die filling can be achieved and metal losses into the flash can be minimized.

Impression Die Forging

The die designer’s goal is to produce a closed die forging at the lowest cost that has the physical and mechanical properties necessary to meet the customer’s requirements. To attain the goal, the designer must consider those factors that govern metal flow and die filling so as to produce defect free parts with the required properties.

Die Block Design

Hammer and press die differences, die block sizes, die inserts, die shanks and holders, location of die stations and multiple impression dies are features that will be presented.

Trimming, Special Processes

In this section we will cover plastic deformation processes that are not conventional forging in the strict sense, but are indispensable for the forging industry as a whole, such as shearing, trimming, piercing, bending, coining and hot padding.

Economics in Die Design

The cost of die materials is a relatively low percentage of the overall costs of sinking a die. Using a typical hammer as an example, the cost of the material for a new die is approximately 18% to 25% of the total cost. Which means that you as a die designer have much control of over 75% of the cost of producing a die.

Effect of Shape on Forging Pressure and Die Filling

Most impression die forgings are of complex shape. In such complex shapes, smooth, proper metal flow and die filling are necessary for forging a defect-free part with the required mechanical properties.

Extending Die Life By Design

In order to satisfy demands for lower costs and shorter production preparation times, it is vital that we are able to predict the die life. This presentation focuses on the wear analysis of a closed die, and die design. In general, the possible causes of die failure in metal forming include catastrophic fracture, excessive bulk plastic deformation and wear.

Die Wear in Hot Forging

Die life in a forging operation is dependent on the mechanical properties of the die steel at the surface conditions. Properties of die steel, which determine their selection as die material for hot forgings are the ability to harden uniformly, resist wear, resistance to plastic deformation, the ability to withstand shock and the ability to resist heat checking.

Guidelines for Precision Hot Forging

Economic pressures have forced even the most reluctant forgers to improve their present manufacturing techniques so they can be cost competitive and maintain higher quality than the rival processes. Reduced cost and increased quality of forgings benefit the forging industry, first by increasing profit margins and second, by helping to maintain markets or regain those lost in recent years.

The Manufacture of Close Tolerance Forging Dies

Forgings made in impression dies will be dimensionally accurate only if the finished cavity in each die half is the correct shape, and if the two cavities are exactly aligned when the dies are installed in the hammer or press. In this section, we will consider only the first point, making dimensionally correct cavities.

Problem-Solving Session

On the last day, the class will divide into small groups, and aided by an instructor, each group will review and tentatively solve an assigned die design problem.

Concurrent Part Engineering and Die Mfg.

Class focus is on bringing tooling into design early to reduce lead times. Working concurrently with early part design to order and prep material, begin die design, machining of parting lines and locks, rough milling impression, and early trimmer work will provide the customer with a quality forging in a timely manner.

Students are encouraged to submit a real life problem from their company for the problem-solving session. A problem-solving report form will be sent to registrants in advance, providing an opportunity to submit a “problem” for consideration. A brief statement of the problem, material being forged, drawings of parts and/or dies, sample part, (if size permits), and a description of effort (what has been tried that did not work) will be needed.
Theory and Applications of Forging & Die Design

FEES / HOTEL / REGISTRATION / CLASS SCHEDULE

FEES/MATERIALS REQUIRED

Tuition is $1,099.00 per student (FIA member), $1699.00 (FIA non-member), which includes class materials, instructor fees, Monday night dinner, lunches and graduation. Continental breakfast is served each day to attendees. Participants will pay individually for dinner Tuesday and Wednesday nights, any evening activities in free time, and hotel charges. Students are also expected to furnish a small inexpensive calculator for use in class, and some minimum drawing utensils including a variable angle, a scale, and/or straight edge of at least 9-inch length.

FIA will honor FIA member registrations first. Member and non-member students will be notified of acceptance on June 1st. If FIA cannot accommodate non-member registration, the fee will be returned. Please call the FIA office at 216-781-6260 if you have questions.

HOTEL

The Embassy Suites Hotel room rate is $119.00 plus tax (currently 15.5%) per night, for single or double occupancy. Indicate your requirements on the enclosed registration form. Participants are expected to pay hotel room charge direct upon departure. Major credit cards and traveler’s checks are accepted. There is a self-parking garage adjoining the hotel ($15 per day; also valet parking for $18 per day with in/out privileges). FIA will coordinate all reservations and overnight accommodations for participants at the Embassy Suites Hotel, 1701 East 12th St., Cleveland, OH 44114.

REGISTRATION/CANCELLATION PROCEDURE

All participants should register for the class by completing and returning the enclosed registration form to FIA for receipt by June 1, 2011 with tuition fee of $1,099.00 for each FIA member registration entry ($1699.00 for non-members). If necessary, phone registrations may be made to the FIA office; but payment must then be received prior to the program. FIA will accept and confirm registrations by FAX on or before June 1st, honoring member requests first. Please do not make air reservations until you are notified by FIA of acceptance in school.

Cancellation after June 1st is subject to the full tuition fee, which will be applied to the operation of the course. Substitutions within each company may be made, but FIA should be notified in each case.

ARRIVAL/DEPARTURE TIMES

Participants should arrive in time for Monday, June 20th registration at 7:30 am. Formal instruction begins at 8:00 am Monday and continues through Thursday until 4:00 p.m. Please do not schedule return flights before 6:00 p.m. on Thursday, June 23rd. From Cleveland Hopkins Airport taxi fare is about $27.00 one way.

CLASS SCHEDULE

Registration and a continental breakfast start at 7:30 a.m. Monday, June 20th, with the School beginning each day at 8:00 a.m. On Monday evening a class dinner is scheduled for 6:00 p.m. School work covers 27 class hours of study, workshop and discussion. Classes end Thursday, June 23rd by 4:00 p.m. Attendance for all sessions is mandatory, so flight departures should be scheduled no earlier than 6:00 p.m. on Thursday.
WHO SHOULD ATTEND

The School is a blend of theory, mathematics and practical information on the subject of forging and forging die design. There are no specific background requirements for attendees. Although a basic knowledge of engineering is a plus, many students without such training receive substantial value from the analysis, problem-solving and discussion sessions. Individual managers are best suited to determine who would receive maximum value.

RETURN ON INVESTMENT

FIA is committed to strong educational programs for forging industry personnel. A fundamental knowledge of metal flow principles, die design practice and forging technology is essential for employees who need to become strong contributors to cost reduction and profitability. Most attendees also rate informal discussions with other industry personnel as a strong bonus of FIA School attendance.

INSTRUCTORS

Instructors are selected for their knowledge, experience and ability to communicate well in a classroom environment. The principal portion of the School will be presented by Dr. Joe Domblesky of Marquette University, Dr. Chester J. Van Tyne, Colorado School of Mines; John Walters, Scientific Forming Technologies; Charles J. Crout, Ajax Technologies; Richard Douglas, Metalworking Consultant Group; and Marty Hausermann, Hausermann Die & Machine Co.

STUDENT PROBLEM SOLVING SESSION

Companies are encouraged to submit a real life problem for the problem-solving session. A problem-solving submission form will be sent to registrants in advance, providing an opportunity to submit a “problem” for consideration. A brief statement of the problem, material being forged, drawings of parts and/or dies, sample part, (if size permits), and a description of effort (what has been tried that didn’t work) will be needed. This information should be submitted to FIA, attention George Layne, two weeks prior to class.

COMMENTS FROM PRIOR ATTENDEES

• “All instructors are skilled, excellent speakers, very well prepared for their presentation”
• “Excellent course – connected theory with practice very well”
• “Best part of the class was getting together/meeting with other people from the industry”
• “I gained a new understanding of the forging process”
• “Excellent course, especially for someone new to the forging industry”
• “This is a great movement to keep manufacturing strong in the U.S.”
• “I will be able to use a lot of information learned at this course in our plant to improve some operations”
• “Thanks for the great info, atmosphere, and hospitality. Truly great!”

Forging Industry Association is a non-profit organization comprised of North American producers of forgings, and of worldwide suppliers who provide materials, equipment and technical services commonly used in the forging industry. The Association, with its predecessor organizations, has served the forging industry since 1913.
Please register the following individual(s) from our company. Payment of $1,099.00 (FIA member), $1699.00 (FIA non-member) tuition fee for each registrant should accompany this form. Fees are non-refundable after June 1, 2011 (substitutions allowed). Participants will be expected to pay hotel charges direct upon departure.

REGISTRATION:

Name __________________________ Title __________________________ Nickname __________________________

Name __________________________ Title __________________________ Nickname __________________________

Company __________________________

Address __________________________

City/State/Zip __________________________

Phone __________________________ Fax __________________________ E-mail __________________________

* Please do not make travel arrangements until notified of your acceptance in the School.

ACCOMMODATIONS: Embassy Suites Hotel room rate - $119.00 + tax. (Attendees pay direct to hotel upon departure):

I/we will need () 1 room () 2 rooms for: arrival ____________ ** departure ____________

(date) (date)

PAYMENT TO FIA:

$1,099.00 (FIA member) $1699.00 (FIA non-member) TOTAL TUITION FEE ________________

Method of Payment: ☐ Check enclosed (Payable to FIA) ☐ Credit Card (complete next line)

☐ VISA ☐ MC ☐ Am Exp ☐ DISC Exp. Date ____________ Card Number __________________________

Security Code (3-digit # on back of card) ____________

() Yes, I plan on submitting a student problem including drawing of parts or dies and the parts themselves (if size permits) for study by the attendees. FIA will forward “Problem Description” Form with confirmation.

** MUST ARRIVE BY 7:30 A.M. MONDAY, JUNE 20th TO ATTEND ALL CLASSES FOR GRADUATION. PLEASE DO NOT SCHEDULE RETURN FLIGHTS BEFORE 6:00 P.M. ON JUNE 23rd.

Please Return by June 1, 2011 to: Connie Long
Forging Industry Association, 1111 Superior Avenue, Ste. 615, Cleveland, OH 44114
Phone: 216-781-6260 FAX: 216-781-0102 E-mail: info@forging.org